Evaluating Work Zone Intrusion Alarm (WZIA) Systems for Inclusion in Standard Traffic Control Plans

Ghazan Khan, Ph.D. and Kevan Shafizadeh, Ph.D., PE, PTP, PTOE
Department of Civil Engineering
College of Engineering and Computer Science
California State University, Sacramento

Prepared for the 2020 (Virtual) ITE Joint Western & Mountain Districts Annual Meeting
July 1, 2020
Outline

• Overview
• Selected/Procured WZIA Systems
• Systems Testing/Feedback Procedures
• (Highlights of) General Performance Results of Selected WZIA Systems
• Guidance on Practical Deployment in Standard Traffic Control Plans
• Cost Analysis
• General Recommendations (to Manufacturers)
• Future Research
Overview: Objectives and Introduction

- **Objectives**
 - Evaluate the effectiveness of Work Zone Intrusion Alarm (WZIA) systems
 - Assess practicality of deployment and implementation guidance

- **Introduction - What is a Work Zone Intrusion Alarm (WZIA) system?**
 - Supplement existing work zone (WZ) best practices
 - Complement existing traffic control devices (TCDs) in MUTCD - *not to replace*!

- **Primary types of sensor intrusion and communication system technologies (which can be combined):**
 1. Kinematic – activated by physical impact
 2. Infrared – interrupted beam of light
 3. Pneumatic – air pressure in tube sensors
 4. Microwave – monitors work zone and potential intrusion using microwaves
 5. Radar – monitors work zone and intrusion using radar
 (Radio – communication between sensors and an alarm)
 (Fyhrie, 2016; Marks et al., 2017)
Overview: Project Tasks

• Project Tasks
 – Task 1: Form Project Advisory Panel
 – Task 2: WZIA Systems Assessment and Literature Review
 – Task 3: Selection and Procurement of WZIA Systems
 – Task 4: Development of Testing Plans and Protocols
 – Task 5: Pilot Testing
 – Task 6: Supplemental Testing
 – Task 7: Recommendations and Report
Selected/Procured WZIA Systems: WAS

- **Worker Alert System (WAS)** – Pneumatic tubes to pressure sensor and uses microwave communications to a portable alarm case (PAC) with alarm light and speaker and to a vibrating personal safety Device (PSD)

Source: trafficsafetywarehouse.com, 2017

Selected/Procured WZIA Systems: SonoBlaster

- **SonoBlaster** – Kinematic “system” uses disposable CO\(_2\) cartridges to blow an air horn when traffic cone fitted with device is tipped

Source: Transpo Industries Inc., 2017
Selected/Procured WZIA Systems: Intellicone

- **Intellicone** - Kinematic system uses lamps (lights) with motion sensors that mount on cones and communicate via radio to an alarm unit with auditory and visual alarms when tipped; system can also use web-enabled system with GPS to program a work zone.

Source: transcanadatraffic.ca, 2019
Systems Testing/Feedback

- Closed System Testing & Observations
- Maintenance Staff Survey/Feedback
 1. Pre-Deployment
 2. Deployment
 3. Operation
 - Sound Tests
 - Outcomes Tests (Type I and Type II Errors)
 4. Practicality and Effectiveness

Possible WZIA Evaluation Trial Outcomes

<table>
<thead>
<tr>
<th>Vehicle Intrusion</th>
<th>Alarm Activated</th>
<th>No Alarm Activated</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive – Alarm activated as designed.</td>
<td>False Negative – Alarm fails to activate during a vehicle intrusion.</td>
<td>False Positive – Alarm is activated when no vehicle intrusion occurs. True Negative – Alarm at rest as designed (not activated). This is the normal, “ready” operating state.</td>
</tr>
<tr>
<td>No Vehicle Intrusion</td>
<td>False Positive – Alarm is activated when no vehicle intrusion occurs.</td>
<td>False Positive – Alarm is activated when no vehicle intrusion occurs. True Negative – Alarm at rest as designed (not activated). This is the normal, “ready” operating state.</td>
</tr>
</tbody>
</table>
Results – Worker Alert System (WAS)
Results – Worker Alert System (WAS)

• Pre-Deployment
 – Charge alarm unit battery
 – Replace disposable batteries in personal safety device (PSD), pressure sensor, and hand-held remote
 – Easy to transport
 – Accidental activation due to raised buttons on PSD and hand-held remote (removal of batteries during transport recommended)

• Deployment
 – Ease of deployment, minimal worker exposure (survey comments)
 – Pressure sensor should be positioned near the shoulder
 – Multiple trip hoses can connect to transmit signal over a large area providing greater coverage
 – Flexibility of trip hose to be deployed in multiple configurations; openings for maintenance vehicles

(Note: Additional issues were observed with an older-model unit.)
Results – Worker Alert System (WAS)

- **Operation**
 - Audio alarm and visual alert; PSD adds sensory (vibratory) alert and audio (via earbud only)
 - Max. range between trip hose and nearest alarm unit: 225 ft
 - Alarm unit should be deployed 4 ft above ground using base magnet
 - Multiple trip hoses and alarm units can provide adequate sound and detection coverage in work zone
 - **PSD availability is a significant advantage** (75-ft max range in vicinity of alarm unit)
 - **Low sound intensity relative to other systems** (60 dBa); can be remedied by using multiple alarm units, but limited by connection range between units (175 ft)
 - Alarm duration: 5 sec; Speaker on one side (alarm unit orientation is important)
 - Hand-held remote for flagging and manual operation
 - No discernable delay in alarm activation
Results – Worker Alert System (WAS)

- Practicality and Effectiveness
 - “Minimal setup” consists of single trip hose and alarm unit
 - Provides moderate reaction time for workers
 - Assumes vehicle travels in the closure and crosses the one trip hose
 - Additional trip hoses and alarm units could provide greater coverage
 - Overall positive feedback from maintenance staff

<table>
<thead>
<tr>
<th>Vehicle Speed at Trip Hose Impact (miles per hour)</th>
<th>Minimum Reaction Time (seconds) for Workers to React (Using a Minimal Setup*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (37)</td>
<td>6.1</td>
</tr>
<tr>
<td>30 (44)</td>
<td>5.1</td>
</tr>
<tr>
<td>35 (51)</td>
<td>4.4</td>
</tr>
<tr>
<td>40 (59)</td>
<td>3.8</td>
</tr>
<tr>
<td>45 (66)</td>
<td>3.4</td>
</tr>
<tr>
<td>50 (74)</td>
<td>3.1</td>
</tr>
<tr>
<td>55 (81)</td>
<td>2.8</td>
</tr>
<tr>
<td>60 (88)</td>
<td>2.6</td>
</tr>
<tr>
<td>65 (96)</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Results – SonoBlaster
SonoBlaster – Overall Performance

• Pre-deployment
 – Mechanically operated, no batteries required
 – Approx. 9 lbs. (cone and installed SonoBlaster)
 – Mounting bracket installation required on each cone (approx. 10 - 15 minutes labor installation)
 – Perceived flimsy bracket installation, durability (survey comment)
 – Cannot fit typical Caltrans “cone body truck” in two rows

• Deployment
 – Accidental activation during deployment from cone body truck
 – Slower to deploy, device requires unlocking (survey comments)
 – Could be transported while stacked vertically
 – Increased exposure during slow deployment (survey comments)
SonoBlaster – Overall Performance

• Operation
 – Loudest audio alarm of all devices tested (78 dBA)
 – No visual alert
 – Inconsistent operation - 15 to 90 second alarm duration
 – High probability of “false negatives”
 – Difficulty in proper installation of CO₂ cartridge
 – Some devices broke down after repeated use; should be discarded after first activation
 – Failed to activate in field test by maintenance staff
 – Moisture and freezing issues (maybe of concern in cold weather conditions)

• Effectiveness and Practicality
 – Highly effective in alerting workers when properly activated
 – Overall feedback/comments from maintenance staff were unfavorable
 – If deployed, many devices can achieve maximum coverage and mitigate the possibility of failed activations
Results – Intellicone
Intellicone - Overall Performance

• Pre-deployment
 – PSA requires 24-hour charging
 – Disposable/rechargeable batteries for lamps
 – One person can carry 2-3 alarm units or up to 8 lamps

• Deployment
 – Benefits from simple deployment, single button turn-on (survey comments)
 – Up to 5 minutes of start-up time to acquire GPS and network signals
 – Lamps turn on automatically when placed on cones
 – Most complicated system to learn to deploy
 – Lamps come with 5 different sensitivity levels (using different sensitivities is not recommended)
 – Possible increase in exposure while placing lamps (survey comments)
Intellicone - Overall Performance

• Operation
 – Most consistent operation of all systems tested; audio alarm and visual alert capabilities
 – No “false negative” tests were observed when the system was deployed properly.
 – Max. range distance between single alarm unit and lamp is 100 ft
 – Max. range distance between lamps or between alarm units is 100 ft
 – Range measurements met manufacturer specifications
 – Multiple lamps and PSA units can connect with each other to provide adequate sound and detection coverage in a work zone (more units are required for adequate detection)
 – Low sound intensity (61 dBa)
 – Alarm duration is 32 seconds
 – Three-tone alarm sound is specially designed to be highly effective in alerting workers
 – No discernable delay in alarm activation.
 – Two types of rotating visual alerts, ok during daytime, most effective during nighttime
Intellicone - Overall Performance

- **Practicality and Effectiveness**
 - Transverse lamp deployment recommended for added coverage
 - Typical deployment layout shown in figure
 - Short setup distances could provide insufficient advance warning
 - Additional lamps and alarm units can provide greater coverage and warning to workers
 - Overall positive feedback from maintenance staff

![Diagram of Intellicone system](image)

<table>
<thead>
<tr>
<th>Vehicle Speed at Cone Impact - miles per hour (feet per second)</th>
<th>Minimum Reaction Time (seconds) for Workers (Cones Impacted 100 feet from Alarm)</th>
<th>Minimum Reaction Time (seconds) for Workers (Cones Impacted 200 feet from Alarm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (37)</td>
<td>2.7</td>
<td>5.4</td>
</tr>
<tr>
<td>30 (44)</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>35 (51)</td>
<td>1.9</td>
<td>3.9</td>
</tr>
<tr>
<td>40 (59)</td>
<td>1.7</td>
<td>3.4</td>
</tr>
<tr>
<td>45 (66)</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>50 (74)</td>
<td>1.4</td>
<td>2.7</td>
</tr>
<tr>
<td>55 (81)</td>
<td>1.2</td>
<td>2.5</td>
</tr>
<tr>
<td>60 (88)</td>
<td>1.1</td>
<td>2.3</td>
</tr>
<tr>
<td>65 (96)</td>
<td>1.0</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Guidance on Practical Deployment in Work Zone Standard Control Plans

(Scenario: T-13 Closure)
Guidance on Recommended Deployment in Standard Traffic Control Plans

• Goals
 – Supplement existing Standard Work Zone Traffic Control Plans
 – Provide Detailed Guidance on Practical Deployment in Active Work Zone

• Primary Focus – T13 Caltrans Standard Traffic Control Plan
 – Lower speed work zone deployment preferred given reaction time and sound/noise level concerns
 – Lack of information on reliability/functionality in high speed applications

• Maintenance Staff Feedback/Recommendations Considered
WAS – Recommended Deployment Plans

- **33’ upstream Trip Hoses**
- **225’ max. distance from nearest alarm unit**
- **75’ max distance between Trip Hoses recommended for effective coverage**

Typical Lane Closure with Reversible Control

- **Alarm Location**
- **175’ max. distance between units**
- **Alarm units 4’ from ground on the side of a test vehicle with clear line of sight**

Alarm Location (in work area)
- **Alarm units 4’ from ground on the side of a test vehicle with clear line of sight**

33’ Trip Hose

PSD within 75’ of any alarm unit
Intellicone – Recommended Deployment Plans

- Intellicone Lamps
 - 100' max. distance between lamps
 - 100' max. distance between PSA and the nearest lamp
 - 5' max. distance between transverse lamps

- Intellicone PSA Unit
 - 100' max. distance between two PSA units
Acknowledgments

• Caltrans Division of Research, Innovation, and System Information (DRISI)
 – Arvern Lofton
 – Justin Unck
 – Joe Horton

• Caltrans Division of Maintenance
 – Theresa Drum
 – Patti-Jo Dickinson
 – Tim Lang
 – Marvin Guinez
 – David Frame
 – William Farnbach
 – Joel Allen

• Caltrans Division of Traffic Operations
 – Atifa Ferouz
 – Nestor Cuellar

• Caltrans Division of Construction (District 3)
 – Ed Yarbrough
 – Kim Smith

• Caltrans Maintenance Equipment Training Academy (META) Staff
 – Larry Schwartz
 – Mark Peters
 – Steve Marker
 – Lindsey Mendonca

• Sacramento State Research Team
 – Ghazan Khan
 – Kevan Shafizadeh
 – Cynthia Ruiz *
 – Shukurat Sanni *
 – Steffen Berr *
 (* students)
Questions?