Innovative Performance Evaluation Matrix for Solving Urban Freeway and Interchange Congestion

Chengxin Dai, PE

Western ITE Conference
STUDY NEED

- Multimodal microsimulation analysis to compare performance of alternatives
- Develop useful performance measures in overcapacity conditions
STUDY AREA

- I-5
 - Crossroads of Portland freeway systems
 - 150,000 AADT in four-lane cross-section at the pinch point
 - 1,100 feet between each interchange
 - Critical for job and economic generators
STUDY AREA

- Arterial Network
- Broadway & Weidler
- Moda Center Area
- Multimodal facilities
FUTURE ALTERNATIVES

A: No-Build
1 vs. 2 lane SB I-84 flyover

B: Auxiliary Lane
1 vs. 2 lane SB I-84 flyover

C: Single Braid
1 vs. 2 lane SB I-84 flyover

D: Double Braid
1 vs. 2 lane SB I-84 flyover
PERFORMANCE MEASURES FOR CONGESTED CONDITIONS

- Traditional MOEs:
 - LOS, V/C, Average Travel Time, Brainscan Chart, Percent of Unmet Demand, etc.
 - Not particularly useful in heavy congestion

- Proposed MOEs:
 - Travel Time Reliability
 - Lane by Lane Speed
 - Emergency Braking
The less variation from the median, the more reliable the travel time.

Use Vehicle Record data (second-by-second) sorted into northbound and southbound travel routes.

NEW PERFORMANCE MEASURES

Travel Time Reliability

- The less variation from the median, the more reliable the travel time.
- Use Vehicle Record data (second-by-second) sorted into northbound and southbound travel routes.
NEW PERFORMANCE MEASURES
Lane-by-Lane Speed Chart

- Compare speeds between scenarios
NEW PERFORMANCE MEASURES

Emergency Braking Events

- Emergency braking threshold $\geq 14.8 \text{ fps}^2$
 - AASHTO Green Book (2011) emergency braking rate

- Emergency Braking data obtained from Vissim Vehicle Records
Existing ODOT Crashes vs. Existing Calibrated VISSIM Results

Pearson's correlation coefficient:

- $r_{am} = 0.56$
- $r_{md} = 0.95$
- $r_{pm} = 0.73$
BRAKING DENSITY HEAT MAPS

- Visualize high risk sections
- High concentration of emergency braking at:
 - Southbound Entry
 - Southbound between I-405 merge and Broadway off-ramp
- Adding two-lane flyover improves the safety.
- North of Broadway: all the “build” scenarios reduce emergency braking events by more than 60%.
- South of Broadway: only braid options reduce emergency braking events.
- Overall significant reductions in emergency braking for all the build options.
OPERATION AND SAFETY PERFORMANCE MATRIX

<table>
<thead>
<tr>
<th></th>
<th>Option A1</th>
<th>Option A2</th>
<th>Option B1</th>
<th>Option B2</th>
<th>Option C1</th>
<th>Option C2</th>
<th>Option D1</th>
<th>Option D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Performance</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
<tr>
<td>Travel Time</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
<tr>
<td>Travel Time Reliability</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
<tr>
<td>Congestion</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
<tr>
<td>Spot Speed</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
<tr>
<td>Percent Unmet Demand</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
<tr>
<td>Emergency Braking</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>◯</td>
</tr>
</tbody>
</table>
SUMMARY

- Select appropriate performance measures for comparative purposes
- Travel time reliability & emergency braking analysis reveal details of congested facility performance.
- Combination of new and traditional MOEs for congested facility evaluation
Questions?

CONTACT INFORMATION:

Chengxin Dai
Traffic Engineer
HDR
chengxin.dai@hdrinc.com

Jeremy Jackson, PE (co-author)
Senior Traffic Engineer
HDR
jeremy.jackson@hdrinc.com