Microscopic Simulation Modeling to Evaluate Complete Streets and Tactical Urbanism Strategies

Bernice Liu and Anurag Pande (Cal Poly)
Jonathan Howard (Caltrans and Cal Poly)
Serena Alexander and Alex Hughes (SJSU)
WHAT IS A COMPLETE STREET?

ACTIVE SIDEWALKS DEDICATED BIKE Lanes ACTIVE ROADWAY SAFE CROSSWALKS PLANTING STRIP GREEN SPACES

http://www.gardner-ma.gov/730/Complete-Streets
Illustration of Before and After Complete Street Conversion

Before (Left) and After (Right) Complete Street Conversion (Source: NACTO)
Tactical Urbanism
Major Goals & Objectives

• **Major Goal:** Improve multimodal mobility and public life in downtown San Jose through complete streets and tactical urbanism strategies assessed and demonstrated through microscopic traffic simulation models.

• **Scenario Development:** Model, evaluate, and prioritize corridors in downtown San Jose for complete street conversion.

• **Literature Review/Case Studies:** Identify complete street and tactical urbanism strategies from around the world and examine the transferability of these strategies into the San Jose context.

• **Generalization:** Test and refine scenario development techniques and develop a micro-simulation evaluation framework that can help other cities adopt similar strategies.
Methodology

Developing microscopic simulation models of the transportation network for various scenarios.

- Microscopic simulation involves replication of real world transportation system operations to examine the inherent complexity, stochastic, and dynamic nature of these systems.
- VISSIM is a stochastic microscopic, time step, and behavior based simulation package developed to model urban transportation operations.
Why Microsimulation?

• Decision-making tool
 • Time stretching/contraction capability.
 • Cause-effect relations
 • Exploration of possibilities
 • Diagnosing of problems

• Visualization of plans
 • A tool for public engagement
Study Area and the Model
O-D Matrix

• O-D Pairs
 • Parking lots to freeway on-ramps
 • Freeway off-ramps to parking lots

• Origins and Destinations
 • 13 on-ramps, 8 from I-280 and 5 from SR-87
 • 48 parking garage entrance/exits
 • 12 off-ramps, 7 from I-280 and 5 from SR-87
Input Data and Output Metrics

• Input
 • O-D information
 • Transit-line information
 • Traffic volumes by mode on individual streets
 • Signal timing
 • Scenario information

• Output Metrics
 • Travel time
 • Queue information
 • Delays
Calibration and Validation

• VHelper
Calibration and Validation

Expected volumes from VHelper

<table>
<thead>
<tr>
<th>Expected volumes from VHelper</th>
<th>Actual volumes from simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual</td>
<td>Model</td>
</tr>
<tr>
<td>EBL</td>
<td>67</td>
</tr>
<tr>
<td>EBF</td>
<td>270</td>
</tr>
<tr>
<td>EBR</td>
<td>180</td>
</tr>
<tr>
<td>Actual</td>
<td>Model</td>
</tr>
<tr>
<td>EBL</td>
<td>67</td>
</tr>
<tr>
<td>EBF</td>
<td>270</td>
</tr>
<tr>
<td>EBR</td>
<td>180</td>
</tr>
</tbody>
</table>

Mineta Transportation Institute

Mineta Consortium for Transportation Mobility
Validation Measures

• Intersection volumes
 • Provided by the City

• Travel time
 • Estimated from Google Maps

• Speed data
 • Provided by the City
Microsimulation Application
Scenarios

• Convert one-way streets into two-way:
 • 3rd & 4th St
 • Almaden St (between Santa Clara St and Carllysle St)
 • Vine St

• Demand Patterns Update
Thank You!

Anurag Pande
Associate Professor, Civil & Environmental Engineering
Faculty Liaison for Service Learning
Cal Poly State University
San Luis Obispo, CA, 93407

Phone: +1 (805) 756-2104
Email: apande@calpoly.edu
Selected Works at: http://works.bepress.com/apande/
Follow me on Twitter @PolyProfPande