Traffic Signal Adaptive System
Andrea Renny, City of Monterey
A TRAFFIC STUDY SHOULD LEAD TO ADJUSTING THE TIMING OF TRAFFIC LIGHTS. IF IT DOESN’T, I’LL GET A LADDER AND DO IT MYSELF.
30,000 Residents

20,000 Work force

2 to 4 M Visitors per year
Why Adaptive?

- Visitor Experience
- Constraints
- Businesses
- Unpredictable Peaks
- Staffing
- Residents

$87bn
Cost of congestion in the United States in 2018

97 hours per year
Time lost per person in the US while commuting in 2018

Source: Inrix (2019)
The performance of adaptive systems over time stays constant, continuing to add value to system.

![Graph showing the effectiveness of fixed timing plans over time.](image-url)
Objectives

- Delay
- Travel Time
- Stops
- Travel Speed
REAL-TIME ADAPTIVE CENTRAL Control System

- Split
 - Phase Change
- Cycle
 - 2.5 to 5 min
- Offset
 - Each Cycle
- Optimisation
- Technique
• Continually collects detector data
• Fully optimizes cycle length, splits, and offsets
• Uses an online (real-time) simulation model
• Makes frequent small adjustments to parameters
• Uses no fixed timings, only ranges
• Uses profile data (historic data) for faulty detectors
Lighthouse/Del Monte Corridor Adaptive System (16 signals)
Adaptive System Cycle Length vs. Fixed Timing Plan

- Cycle length can vary every 2+ minutes over the day
- Changes with demand
What are the benefits of this adaptive system?

1. Less time in traffic
2. Reduces carbon emissions
3. Improves traffic flow
4. No need for reprogramming
Lighthouse Adaptive - Before and After Study

TRAVEL TIME
-10%

AVG DELAY

AVG STOPS
-32%

AVG SPEED
+13%

Table:

<table>
<thead>
<tr>
<th></th>
<th>Average Travel Time (sec)</th>
<th>Average Delay (sec)</th>
<th>Average Stops (#)</th>
<th>Average Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM PEAK Northbound</td>
<td>-3%</td>
<td>-23%</td>
<td>-38%</td>
<td>3%</td>
</tr>
<tr>
<td>AM PEAK Southbound</td>
<td>-3%</td>
<td>-11%</td>
<td>-18%</td>
<td>2%</td>
</tr>
<tr>
<td>MD PEAK Northbound</td>
<td>-1%</td>
<td>-36%</td>
<td>-43%</td>
<td>1%</td>
</tr>
<tr>
<td>MD PEAK Southbound</td>
<td>-28%</td>
<td>-66%</td>
<td>-57%</td>
<td>40%</td>
</tr>
<tr>
<td>PM PEAK Northbound</td>
<td>-6%</td>
<td>-9%</td>
<td>0%</td>
<td>7%</td>
</tr>
<tr>
<td>PM PEAK Southbound</td>
<td>-17%</td>
<td>-19%</td>
<td>-27%</td>
<td>20%</td>
</tr>
<tr>
<td>WEEKEND Northbound</td>
<td>-13%</td>
<td>-43%</td>
<td>-43%</td>
<td>15%</td>
</tr>
<tr>
<td>WEEKEND Southbound</td>
<td>46%</td>
<td>113%</td>
<td>8%</td>
<td>-31%</td>
</tr>
</tbody>
</table>