SAN DIEGO MESOSCOPIC ASSIGNMENT MODEL

ITE Western District Conference
Monday June 19th, 2017
Project Introduction

• Current Project
 – Region-wide 24 hour mesoscopic dynamic traffic assignment (DTA) model for San Diego
 – One-way integration with SANDAG activity–based model (ABM)
 – Near term system management scenarios

• Desired Outcome
 – Analysis of projects that improve system efficiency

• Future Roadmap
 – Full integration of DTA and ABM with feedback
 – Future year model runs
 – Enhanced system management scenarios
Traffic Assignment Hierarchy

- **Macroscopic**: Static user equilibrium used in 4-Step and ABM models
- **Mesoscopic**: Time-dependent user equilibrium with realistic, but simplified vehicle simulation
- **Microscopic**: Realistic simulation of driver behavior and interactions
Why Mesoscopic DTA?

- Congestion Duration
- Dynamic Tolling
- Travel Time Reliability
- Refined Speeds for Air Quality Analysis
- Launching Point for New Integrated Corridor Management Projects
Mesoscopic DTA Benefits

- System Management Strategies
 - Traffic signal coordination
 - Variable speed limits
 - Ramp metering
 - Traveler information systems

- Transit Improvement Projects
 - Transit queue jumps
 - Transit only lanes
Model Dimensions

- **Zones**
 - 4984 internal
 - 12 external

- **Network**
 - 40,000+ Links
 - 30,000+ Nodes
 - 3600+ Signalized intersections
 - 320 Ramp meters
 - 270 Transit lines

- **Trip List (ABM)**
 - 8.9M Vehicle trips
 - 12 Vehicle classes
 - Auto
 - Truck
 - Bus

- **Duration**
 - 24 hours
Data Interfaces

Integrated Corridor Management System
- RAMS
- RMIS
- CPS
- Manual Signal Parameters

Validation Data
- Traffic Counts
- Historical Travel Times

SANDAG GIS (TCOVED)
- Links & Nodes
- Transit Routes

Aimsun Network

Parameters
GIS Network Database

- **TCOVED Master Network Framework**
 - Road & transit network data
 - Contains all future project phasing
- **Goal:** Support Meso and Macro Networks in 1 GIS Database
Challenges with Existing Structure

• Network Attributes Configured for Macroscopic Assignment
 – Missing minor intersection approaches
 – Missing intersection details:
 • U-turns
 • Shared turn approaches
 • Turn bay lengths
 • No turn on red signage
 – Controller IDs and signal timing details
 – 3,600+ signalized intersections
Calibration Process

• Mesoscopic One-Shot
 – Used for network and data validation
 – Iterative approach between geographic and time aggregations
 • Individual cities → large subareas → entire region
 • AM → PM → off-peak → combinations → 24hr

• Dynamic User Equilibrium (DUE)
 – Convergence tests
 – Trip list tests
Network Validation Process

• Follow the Red Brick Road
Network Validation Process

• Signal Timing Issues
Demand Calibration

• Demand from ABM
 – No ODME for trip lists
 – Diurnal distributions

• Evaluation of area with heavy travel demand
 – Colleges
 – Hospitals
 – Military
 – Shopping
 – Airport
 – Attractions
DRAFT Results

- **DUE Convergence**
 - AM RGAP < 0.5
 - 20 iterations

- **Runtime**
 - 1/3 of real time
 - 3 hour AM period
 - 20 iterations
 - 18 hour runtime

- **Count Validation**
 - Freeway $R^2 > 0.8$
Project Team

- Murat Ayçin, TSS-Transport Simulation Systems, Inc. murat.aycin@aimsun.com
- Rick Curry, SANDAG rick.curry@sandag.org
- Pascal Volet, TSS pascal.volet@aimsun.com
- Mariya Maslova, TSS mariya.maslova@aimsun.com
- Paolo Rinelli, TSS paolo.rinelli@aimsun.com
- Christi Willison, WSP christi.willison@wsp.com
- Sijia Wang, WSP sijia.wang@wsp.com
- Ashish Kulshresta, WSP ashish.kulshresta@wsp.com