SMART CITIES – A PARADIGM SHIFT FOR TRANSPORTATION ENGINEERS

ITE Presentation
Leo K Lee, PE
CEO
June 19, 2017
CHARACTERISTICS OF SMART CITIES

Infrastructure and services are interlinked using technology to improve the quality of life by enhancing their operation:

- Cloud-based services
- Internet of Things (IoT)
- Network of Sensors and RFIDs
- Smart Cars
- Autonomous/Connected Vehicles
CONNECTED VEHICLES IMPROVE OPERATIONAL EFFICIENCY
AUTONOMOUS INTERSECTION
CONNECTED VEHICLES INCREASE ROADWAY CAPACITY

• Reduced need to build roads and add lanes
 • 1800 vphpl → 7200 vphpl on Arterials
 • → 14400 vphpl on Freeways

Total Public Construction Spending in the U.S. as a Percentage of GDP

Source: Federal Reserve Bank of St. Louis, U.S. Global Investors
PARKING IN CBD WILL BE REDUCED

NOW= 40% of urban land for roads and parking, needs up to 4 parking spaces/vehicle
PARKING IN CBD WILL BE REDUCED

FUTURE = Reduced to 1-2 parking spaces/vehicle = 75 Billion SF of parking spaces available

• Parking spaces reduced from 10’ to 7’ wide
DESIGN OF FUTURE MALLS WILL CHANGE

- Reduction of parking needs at malls and retail centers
 - E.g. 1 Million SF retail center with 5.0 parking/1000SF = 5,000 spaces = 750,000SF
 - Halved = 2,500 spaces saved = 30 acres of land

- Larger drop-off area needed at malls, offices, etc.
CONNECTED VEHICLES IMPROVE ROADWAY SAFETY

- Reduction in pedestrian and auto accidents
 - 31 major pileups since 2011
- SOVs reduced
 - e.g. San Francisco 62% SOV dropped to 50% by 2015 40% by 2019
- VMT will go up
- Car ownership drops

<table>
<thead>
<tr>
<th>Year</th>
<th>No of pileups</th>
<th>Pileups in USA</th>
<th>No. killed</th>
<th>No injured</th>
<th>Average No. vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>7</td>
<td>2</td>
<td>20</td>
<td>314</td>
<td>111.1</td>
</tr>
<tr>
<td>2012</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>170</td>
<td>68.0</td>
</tr>
<tr>
<td>2013</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>239</td>
<td>88.4</td>
</tr>
<tr>
<td>2014</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>154</td>
<td>81.3</td>
</tr>
<tr>
<td>2015</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>170</td>
<td>79.2</td>
</tr>
<tr>
<td>2016</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>62</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>19</td>
<td>72</td>
<td>1109</td>
<td>82.3</td>
</tr>
</tbody>
</table>
ROADSIDE INFRASTRUCTURE FOR CONNECTED VEHICLES

• Sensors
 • Presence detectors at intersections
 • Queue length detectors
 • Travel time measurement
 • Delay measurement

• Communications between Intersections

• DSRC Transceivers
 • Communicate with connected vehicles

• Artificial Intelligence algorithms to optimize control
 • Artificial Neural Networks
 • Evolutionary Computation, eg Genetic Algorithms
 • Computational Swarm Intelligence
 • Artificial Immune Systems
 • Fuzzy Logic Systems
WILL CONNECTED VEHICLES REPLACE ROADSIDE SENSORS?

• Connected vehicles will allow control devices to know its:
 • Location;
 • speed;
 • acceleration;
 • route or ‘intention’

• Under these conditions, roadside sensors is not necessary if:
 • 100% penetration of vehicle fleet
 • Stable, secure and tested technology before rollout
 • Reliability of electronic systems need to be tested to 99.99% with fallback safety measures
Connecting the “Unconnected Vehicles”

Before 100% Connected Vehicles Deployment:

- Need sensors to detect Unconnected Vehicles in real-time
 - Location
 - Speed

- Artificial Intelligence algorithms will incorporate ‘Unconnected Vehicles’ into the optimizing routines
TRAVEL WILL BECOME A SERVICE, NOT A COMMODITY

• Homebuilding in suburbs will increase
• Insurance
 • Now = owner/driver
 • Future = vehicle; user pay per trip cost
• InterCity Road Travel will go up
 • Short haul airfare about $0.5/mile
 • Cost of AV/CV less than $0.15/mile
 • Will go down in future
COST OF TRAVEL WILL GO DOWN

• Solar paneled roadway pavement providing cheaper free energy to cars
INTERCITY DRIVERLESS TRUCKS WILL REDUCE COST OF SHIPPING

Major shortage of long-haul truck drivers nationally

Average salary of truck drivers = $43,410 per year
Average salary of college graduates = $45,400
(Source: 2015 Census)

Most common job in each state in 2014
(Source: Planet Money)
IMPACT OF SHARED VEHICLES

• Reduction in fixed route transit usage
 • Increased shared use of vehicles
 • E.g. Las Vegas,
 • 2015 = 30% UBER utilization
 • 2016 = 60% to 70%
• Driverless buses and paratransit
• First and last mile connectivity for transit users
IMPACT OF SHARED VEHICLES

• Car utilization
 • Today = 5%
 • Future = 70%
• Cost of travel
 • $0.75-$1.5/mile → $0.15/mile
• People will be more mobile
 • Today = 2.5 trips/day per person
 • Future = 4 to 5 trips/day per person
• VMT will go up
• Improved mobility for children, old, visually impaired, etc.
• Reduced infant mortality
 • especially in challenged residential neighborhoods as a result of lack of access to consistent prenatal care – Columbus Smart City Challenge
IMPACT OF INTERNET OF THINGS

• People become more connected through cloud computing
 • Reduced travel to work
 • Workstation at home connected to cloud server
 • Video conferencing
 • Virtual meetings
WIRELESS BANDWIDTH WILL EXPAND

- 5G Telecom by 2020
 - Approved by FCC on 7/14/2016
 - 1GB/sec to 10GB/sec
 - Expand battery life x10
 - More secure connections
ENGINEERING DESIGN NEEDS TO ADAPT

- Smart Traffic Lights
- Smart Street Lights
- Smart Irrigation
SMART DISSEMINATION OF DATA

Palm Springs Earthquake Warning System

- 30 seconds advanced warning
- Allow garage door to open
- Elevators to suspend
- Emergency power to standby
- Gas valves to shut
THANK YOU!
Contact: LeoLee@Advantec-usa.com