FAA Installs 36,000-Foot-Tall Air Traffic Lights
THE MICROCHIP
Microprocessor Transistor Counts 1971-2011 & Moore's Law

curve shows transistor count doubling every two years

Date of introduction

Transistor count
Exponential Growth of Computing

The exponential growth of computing is a marvelous quantitative example of the exponentially growing returns from an evolutionary process. We can express the exponential growth of computing in terms of its accelerating pace: it took 90 years to achieve the first MIPS per 1000 dollars; now we add 1.2 MIPS per 1000 dollars every hour.

Source: Ray Kurzweil and KurzweilAI.net
VEHICLE
Traffic Ahead

Many carmakers are developing prototype vehicles that are capable of driving autonomously in certain situations. The technology is likely to hit the road around 2020.

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>BMW</th>
<th>Mercedes-Benz</th>
<th>Nissan</th>
<th>Google</th>
<th>General Motors</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEHICLE</td>
<td>5 Series (modified)</td>
<td>S 500 Intelligent Drive Research Vehicle</td>
<td>Leaf EV (modified)</td>
<td>Prius and Lexus (modified)</td>
<td>Cadillac SRX (modified)</td>
</tr>
<tr>
<td>KEY TECHNOLOGIES</td>
<td>• Video camera tracks lane markings and reads road signs</td>
<td>• Stereo camera sees objects ahead in 3-D</td>
<td>• Front and side radar</td>
<td>• LIDAR on the roof detects objects around the car in 3-D</td>
<td>• Several laser sensors</td>
</tr>
<tr>
<td></td>
<td>• Radar sensors detect objects ahead</td>
<td>• Additional cameras read road signs and detect traffic lights</td>
<td>• Camera</td>
<td>• Camera helps detect objects</td>
<td>• Radar</td>
</tr>
<tr>
<td></td>
<td>• Side laser scanners</td>
<td>• Short- and long-range radar</td>
<td>• Front, rear, and side laser scanners</td>
<td>• Inertial measuring unit tracks position</td>
<td>• Differential GPS</td>
</tr>
<tr>
<td></td>
<td>• Ultrasonic sensors</td>
<td>• Infrared camera</td>
<td>Four wide-angle cameras show the driver the car’s surroundings</td>
<td>• Wheel encoder tracks movement</td>
<td>• Cameras</td>
</tr>
<tr>
<td></td>
<td>• Differential GPS</td>
<td>• Ultrasonic sensors</td>
<td></td>
<td></td>
<td>• Very accurate map</td>
</tr>
<tr>
<td></td>
<td>• Very accurate map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Audi RS 7 piloted driving concept
Driver assistance systems
10/14

Front camera:
- Audi active lane assist
- ACC with Stop&Go function
- Speed limit display
- Audi pre sense / front / plus
- Audi adaptive light

Ultrasonic sensors at side:
- Park assist with display of surroundings

Front, rear and top-view cameras:
- Parking system plus with front and rear camera
- Park assist with front and rear camera

Ultrasonic sensors at rear:
- Parking system plus with front and rear camera
- Park assist with display of surroundings

Ultrasonic sensors at front:
- ACC with Stop&Go function
- Parking system plus with front and rear camera
- Park assist with display of surroundings

Infrared camera:
- Night vision assistant with highlighting of detected pedestrians

Front radar sensors:
- ACC with Stop&Go function
- Audi pre sense / front / plus

Rear radar sensors:
- Audi side assist
- Audi pre sense rear / plus

Crash sensors:
- Front protection adaptivity
- Side protection
- Rear impact protection
Figure 2 Several driver-assistance systems are currently using radar technology to provide blind-spot detection, parking assistance, collision avoidance, and other driver aids (courtesy Analog Devices).
Budget Cuts
Just Ahead