Offset Single Point Interchange
I-25 at Rio Bravo Boulevard
Albuquerque, New Mexico

INSTITUTE OF TRANSPORTATION ENGINEERS
2016 WESTERN DISTRICT MEETING
JULY 11, 2016
Background

- Existing Interchange constructed in 1960’s
- Rio Bravo Blvd. provides key crossing of Rio Grande in south Metro Area
- Significant growth ongoing and forecast for Albuquerque’s SW Mesa and Mesa del Sol
- Mesa del Sol Traffic Significant
 - 2040 Population Forecast 80,000 residents
 - Internal Capture Rate?
- Includes RR Spur Track and Canal Crossings
Impact of Mesa del Sol
Existing Conditions (to East)
Existing Conditions (to West)
Project Needs and Purpose

- **Physical Deficiencies**
 - Existing Interchange constructed in 1969

- **Roadway Capacity**
 - Poor Levels of Service with current traffic volumes
 - No available capacity for traffic growth

- **Safety**
 - Numerous crashes related to congested roadways
 (rear-end and angle / left turn crashes)

- **Multi-Modal Connections**
 - No Bike or Pedestrian facilities through the Interchange
Opportunities and Constraints

- ‘Hard to Predict’ Traffic Growth associated with Mesa del Sol Planned Community
- Heavy Truck Traffic (7%)
- Rolling Terrain with Steep Grades (6-7%)
- Adjacent Airport & Runway
- Close Spacing of Existing Intersections
- Utilities (Transmission Lines, Cell Tower)
- Governor’s Top Priority List
- Project Funded for Conventional Solution
Opportunities and Constraints

- Alternatives Considered and Eliminated
 - Diverging Diamond, Roundabout Diamond, etc.
- Requests from Public for ‘Something Better’
- NMDOT Interested in Innovative Solutions
- Available Right of Way—asymmetrical width, 450 ft. west of CL, 150 ft. east of CL
- Opportunity to Improve Intersection Spacing (820 ft. to 1280 ft.)
- Located in Urbanizing Area
Interchange Alternatives Evaluated

Typical Diamond

Single Point Diamond
Interchange Alternatives Evaluated

Offset Single Point At-Grade

Offset Single Point Grade Separated
2040 DESIGN HOUR VOLUMES

Eastbound Rio Bravo: 75% to I-25, 25% to University
Northbound University to Northbound I-25
Low Demand on Ramps to/from South
2040 DESIGN HOUR VOLUMES

Eastbound Rio Bravo: 70% to I-25, 30% to University

Southbound I-25 to Southbound University

Low Demand on Ramps to/from South
Traffic Performance Comparison

<table>
<thead>
<tr>
<th>Interchange Alternative</th>
<th>AM PEAK</th>
<th>PM PEAK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intersection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delay</td>
<td>Max V/C</td>
</tr>
<tr>
<td>Standard Diamond (both terminals)</td>
<td>38</td>
<td>1.00</td>
</tr>
<tr>
<td>Single Point Diamond</td>
<td>18</td>
<td>0.92</td>
</tr>
<tr>
<td>Offset Single Point, At-Grade</td>
<td>15</td>
<td>0.91</td>
</tr>
<tr>
<td>Offset Single Point, Grade Sep.</td>
<td>9</td>
<td>0.79</td>
</tr>
</tbody>
</table>

- Results for Both Sides of Interchange
- Wanted ‘Something Better’
- Grade-separated Option Clearly Best
Dilemma and Innovation

Grade Separated Option Unaffordable

How Can the OSP At-Grade Option be modified to improve traffic performance?

Focus on Eastbound Rio Bravo

1. Bike Crossing of EB-to-NB movement (cycle track?)
2. Lane Utilization
 † Unequal distribution of traffic among the multiple lanes of a lane group
Unbalanced use of lane and signal capacity

Applied the High “T” intersection concept

Channelized traffic destined to NB I-25

Allows Simultaneous Signal Phases
Channelized Offset Single Point
Offset Single Point Signal Phasing

Sequential Phasing

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Peds</td>
<td>No Ped Phase</td>
<td>A and B</td>
<td>A and B</td>
<td>C</td>
</tr>
</tbody>
</table>

Unsignalized Crossing
Traffic Performance Comparison

Rio Bravo Blvd @ Offset Single Point

AM PEAK HOUR

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OSP At-Grade</td>
<td>120</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>OSP Grade-Sep Loop Ramp</td>
<td>120</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>L</td>
<td>L</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Channelized OSP At-Grade</td>
<td>120</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>L</td>
<td>T</td>
</tr>
</tbody>
</table>

PM PEAK HOUR

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OSP At-Grade</td>
<td>120</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>OSP Grade-Sep Loop Ramp</td>
<td>120</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>L</td>
<td>L</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Channelized OSP At-Grade</td>
<td>120</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>R</td>
<td>L</td>
<td>T</td>
</tr>
</tbody>
</table>
Pedestrians and Bicyclists

- Shoulder for Avid Cyclists
- Signed for Westbound Cyclists to use Multi-Use Trail at University Blvd Intersection
- Buffered On-Street Bike Lane
- Signalized Ped/Bike Crossing to Multi-Use Trail and One-Way Buffered Bike Lane
- Multi-Use Trail Follows Rio Bravo Profile Grade
Northbound I-25 Entrance Ramps

- 2040 Design Year Traffic High for Both On-Ramps
- On-Ramp demand distributed better with less delay
- Better Accommodation of Heavy Trucks; Eastbound and Westbound
Simulation Looking Southeast
Simulation Looking East
Simulation Looking North
Simulation Looking West
Other Issues / Concerns

- **Budget / Estimate**
 - $50M Total Project Cost—Higher Cost than originally budgeted ($36M)

- **Construction Phasing**
 - Complex—6 Phases, Regional Detours & Closures

- **Railroad Crossing Coordination**
 - Owned by USAF
Contacts

♫ AECOM
 · Pete Hinckley, PE
 · Office: (505) 855-7409
 · E-mail: peter.hinckley@aecom.com

♫ WSP PB
 · Jim Heimann, PE, PTOE
 · Office: (505) 878-6529
 · E-mail: heimann@pbworld.com
Project Website

- Project website address: http://www.i25riobravo.com
- Drive-thru Simulation

QUESTIONS / COMMENTS