ASCT Systems Engineering

ITE Regional Meeting
June 2014
Rapid City

Paul R. Olson, P.E., PTOE
FHWA Resource Center
Agenda

- First steps
- Operational objectives
- Planning and operations
- Systems engineering basics
- Federal regulations
- Using the Model SE for adaptive signal control technologies (ASCT) documents
- ASCT procurement
- ASCT performance monitoring
Disclaimer

• We will not discuss:
 – Technology
 – Products
What are my next steps?

I manage a large city, with over 1000 traffic signals, I'm considering adaptive signal control for some intersections, but how do I determine the right place for adaptive?

I'm a technologist and want to use the latest and greatest. I just heard about adaptive control and it sounds great, I want one! What do I do next to get it?

I have very old traffic control system and with my recent grant I think I can afford a new system. Is it time to consider adaptive control?

I have tried time of day coordination and even traffic responsive plan selection, but I feel like there could be something better. Could adaptive control be a better solution?

Due to new air quality standards that are out, I need to improve my network. Is it time to consider adaptive control?

I been working with my consultant/vendor for many years and they have been telling me about new adaptive traffic control systems that I should consider. What locations would be the best fit for an adaptive control system?

I am getting calls on a couple of my intersections and I cannot solve the cycle/phase issues. Will adaptive control help?

I have a corridor that I run time of day coordination, but occasionally diverting traffic overwhelms the corridor, could adaptive control provide a better solution?

The planners are telling me that in the next 5-10 years there will be a 50% growth along the main corridor in the city, the current traffic control system will not handle the traffic based on the current capacity. Is it time to consider an adaptive control?
What We Know About ASCT

• Benefits over coordinated TOD operation
 – Travel time, delay, emissions
 – Congestion, Safety
• Most effective where demand conditions are variable and unpredictable
• Linear arterials, limited success within tight grids
• Under saturated
What Are the Risks to Successful Deployment of ASCT?

• Goals are not well understood.
• Problem could be solved with other strategies.
• Functional objectives of the system do not align with agency objectives and needs.
• Loss of other critical functions / features
• Constraints not properly addressed.
• Cost is not managed.
• Maintenance unachievable.
Other Risk Issues

- Technology NEW to most
- Technology still evolving
- Most systems have very limited track record
- Documented history of failed ASCT projects (40%+)
- Significantly increased complexity
- Extremely dependent upon infrastructure
 - Communications systems
 - Detection
 - Staff
- Not “one size fits all”
- Marketing often exceeds performance
Successful Deployment

• Goals well understood
• Agency describes its **NEEDS**
• Positive response to **REQUIREMENTS** in RFP
• Agency **VERIFIES** that contractor/vendor delivers what was required
• Agency **VALIDATES** that the system meets the agencies needs were met
• The Agency operates and maintains the system to ensure effectiveness over the entire life cycle.
Recent Reports

• Roseville, CA (Western ITE)
 – Good TOD Plans just as effective as ASCT
• TRB Paper
 – Issues Affecting the Performance of an Adaptive Traffic Control System in Oversaturated Conditions
• Mesa, AZ
 – ASCT not significant improvement over TOD
• Spokane, WA
 – PM is more important than ASCT
• Florida
 – No statistically significant gains
First Steps

- Identify traffic engineering problems
 - Geometric Constraints
- Identify traffic engineering solutions
- Assess condition of existing stuff
 - Near end of life cycle?
- Fix what you can with existing stuff
 - Does detection work?
 - Communications system working?
 - How reliable is your base line
- This is your backup when ASCT fails

Can’t do this overnight!
ASCT is Not “Set and Forget”

- Detection is critical
- Communications is critical
- Operational expertise is required
- Requires higher level of maintenance
- Requires graceful safe fall back mode
- Doesn’t always do the right thing
 - Safety valve required!
- Requires understanding of problem to solve
- Requires **ACTIVE** management
Let’s Plan for Success

• Funding
• Expertise
• Systems engineering
• Procurement process
• Implementation
• Lifecycle management
• Did it solve the problem?
Do Your Homework!

- Document operational objectives
- Document field conditions
- Document what has been tried
- Document existing infrastructure
- Identify available resources
- Included in LRTP
- Secure funding
What Do Motorists Want?

• “Why do I have to wait when there’s nobody else moving?”
 – Translation: Equitable distribution of green time.

• “Can’t I just drive down the street?”
 – Translation: Progression – driving through successive greens.
The Big Box Scenario – Year 1
Typical Traffic Signal Timing

PEAK 15 Min

VPH (vehicles per hour)

Time of Day
Year 5
Year 9
Variability is Normal—And the Problem

PM Peak Period Demand

PEAK 15
Min
Year 10
Year 13
Operational Objectives

• Smooth flow
• Maximize throughput
• Equitably serve adjacent land use
• Manage queues
• Variable
• Maximize intersection efficiency
Continuum of Management and Operations

Success Begins with Proper Planning
Eisenhower Wants to Build Roads

• How fast Germans moved armies during WWII
• America embroiled in the Red Scare
• Post war prosperity presented an opportunity
How Would We Use a New Roadway Network?

• Move armies quickly
• Move people, goods & services efficiently
What Slows Armies Down?

• Intersections
• Narrow roads
• Tight curves
• Incomplete network
Basic Requirements

• Limited access
• Wide lanes with shoulders
• Divided highway
• High design speed
• Comprehensive network
Functional Requirements

• The highway shall have no at-grade crossings.
• The highway shall separate the two directions of travel.
• The highway shall accommodate vehicles traveling at 70 mph.
• The highway shall have 12-foot lanes.
• The highway shall have vertical clearance of 16.5 feet.
• The highway shall have maximum grade of 6%.
• The highway network should comprise principal east-west and north-south routes.
• Did Eisenhower know anything about building roads?
• Do road builders know anything about moving armies?
• Do they need to?
Did the Road Get Built Right?
Did We Build the Right Roads?
Systems Engineering

- Needs
- Requirements
- Testing
- Design & Implementation

The diagram illustrates the V-model approach to systems engineering, showing the iterative process from needs, through requirements, testing, design, and implementation.
Mitigating Risk

- Designing the roads incorrectly
- Designing the wrong roads
- Spending too much
- Taking too long to build
- Responding to challenges
Systems Engineering

• “An inter-disciplinary approach and means to enable the realization of successful systems”
• Focuses on defining stakeholder needs
• Develop required functionality early in the development cycle
Benefits of Systems Engineering

• Reduced risk of schedule and cost overruns
• Improved stakeholder participation
• Verified functionality and fewer defects
• Better documentation
• Increased likelihood that implementation will meet users’ needs
• Ensures you “get what you need”
What Are the Risks - ASCT?

• Problem could be solved with other strategies
• Functional objectives of the system do not align with agency operational objectives
• Loss of other critical functions / features
• Constraints not properly addressed
• Cost
• Maintenance
940.11 Rule Requirements

• **All** ITS projects must be developed using a Systems Engineering (SE) analysis
• The analysis shall be on a scale commensurate with the project scope
• SE analysis shall address (7) requirements
Seven Requirements of SE Analysis

- Identify portions of the regional ITS architecture being implemented
- Identification of participating agencies roles and responsibilities
- Requirements definitions
- Analysis of technology options to meet reqs
- Procurement options
- Identification of applicable ITS standards and testing procedures
- Procedures and resources necessary for operations and management of the system.
Basic Systems Engineering Deliverables

- Concept of Operations
- Requirements
- High Level Design
- Verification Plan
- Validation Plan
Procurement Regulations

• Proprietary Materials (23 CFR 635.411)
 – Certification of no available competitive product
 • Uniquely fulfills the requirements imposed on the product
 • Achieves synchronization with existing systems
 – Public Interest Finding for proprietary purchase despite alternative available competitive products
 – Limited experimental application
• Systems Engineering provides justification
The Role of Systems Engineering

• Understanding the problem
• Managing risk
 – Projects getting bogged down with shifting requirements
 – Acquisitions being challenged by unsuccessful bidders/proposers/vendors
 – Projects not meeting agency needs
• It is mandatory for federal-aid projects
Use the ITS Architecture

• Don’t simply supply a hyperlink
• Use it to:
 – Seed the Concept of Operations
 – Identify stakeholders
 – Data flow diagrams
 – Architecture flow diagrams
• Identify and define all required interfaces
• Feed project information back into architecture
Purpose of SE Model Documents

• Usual process too much work for small projects…
• …but small projects still impose big risk to small agencies
• Model documents greatly reduce effort by providing wording and documentation…
• …but agencies still must identify their needs
Concept of Operations

• The story of HOW the SYSTEM will be USED and:
 – Includes viewpoints from stakeholders
 – Is written from the perspective of the system operator
 – Defines high-level system concept to justify alternatives
 – Allows requirements to be derived
 – Provides criteria for validation
Requirements

• Describes **WHAT** needs to be achieved by the system, not **HOW**
• Must be linked to a need in the Concept of Operations
• Functional requirement
 – What the system is to do
• Performance requirement
 – How well it is to perform
• Non-functional
 – Under what conditions it must perform
• Enabling requirement
 – Actions taken for system to be fully operational
Testing

• Verification Plan
 – Verifies that the **SYSTEM** fulfills the requirements

• Validation Plan
 – Validates that the user needs have been met
Concept of Operations Template & Questions

• 1.0 – Purpose
• 2.0 – Scope
• 3.0 – Referenced Documents
• 4.0 – Background
 • Network characteristics
 • Traffic characteristics
 • Signal grouping
 • Land use
 • Operating agencies
 • Existing architecture / infrastructure
 • Limitations and proposed changes
Alternative Non-Adaptive Strategies

• Features you are not using that could be used to improve your operation
 – Traffic responsive
 – Complex coordination
 • Actuated coordinated
 • Phase re-service
 • Variable phase sequence
 • Omit phase
 • Early release of hold
 • Dynamic max
Envisioned Adaptive Operations (Chap. 6)

- **HOW** the adaptive system will accomplish the goals and objectives.
- Also describes:
 - Tactics
 - Strategies
 - Policies
 - Constraints
- *Should not describe equipment*
Operational Objectives / Adaptive Scenarios

• Pipeline
• Access equity
• Manage queues
• Variable
Specific Adaptive System and User Needs (Chap. 7)

• Needs that will drive requirements for the system:
 – Vision, goals and objectives
 – Operational features
 – User interface, reporting, monitoring and maintenance
Envisioned Adaptive System Overview (Chap. 8)

- Network characteristics
- Type of adaptive operation
- Crossing arterial coordination
- Institutional boundaries
System Procurement

• Myth
 – FHWA requires Low Bid

• Fact
 – FHWA recommends Best Value
 – Separate ASCT from heavy field construction
Procurement Plan

- **Best Value Supported by SE Analysis**
 - Requirements
 - RFP
 - Proposal
 - Selection
 - Implementation
 - Acceptance

- **Low Bid Supported by SE Analysis**
 - Requirements
 - PS&E
 - Bids
 - Selection
 - Submittal
 - Construction
 - Acceptance

- **Consumer Reports / Low Bid**
 - Market Research
 - PS&E
 - Bids
 - Selection
 - Submittal
 - Construction
 - Acceptance

- **Brand Choice**
 - Requirements Discovered Post Const
Model SE Documents for ASCT (Final)—Now Online

Is It Working?

- Traditional before/after study
 - Small slices in time
 - Expensive
 - Not sustainable
 - Sometimes not credible
 - Not tied to operational objectives

- Build performance measurement into system
 - Maps to operational objectives
 - Continuous measurements
 - Actionable information
• Measures of effectiveness and validation guidance for adaptive signal control technologies (ASCT)
 – Map MOEs to objectives then select data source
 – On/Off study
Potential Performance Measures

<table>
<thead>
<tr>
<th>MOEs</th>
<th>Operational Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Route travel time</td>
<td>• Pipeline</td>
</tr>
<tr>
<td>• Route travel delay</td>
<td>• Multiple objectives by time of day (TOD)</td>
</tr>
<tr>
<td>• Route average speed</td>
<td>• Accommodate long-term variability</td>
</tr>
<tr>
<td>• Route travel time reliability</td>
<td></td>
</tr>
<tr>
<td>• Link travel time, delay</td>
<td>• Pipeline</td>
</tr>
<tr>
<td>• Number of stops per mile on route</td>
<td>• Manage queues</td>
</tr>
<tr>
<td></td>
<td>• Prevent oversaturation</td>
</tr>
<tr>
<td></td>
<td>• Handle incidents and events</td>
</tr>
<tr>
<td>• Traffic volume on route (throughput)</td>
<td>• Multiple objectives by TOD</td>
</tr>
<tr>
<td>• Time to process equivalent volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pipeline</td>
</tr>
<tr>
<td></td>
<td>• Manage queues</td>
</tr>
<tr>
<td></td>
<td>• Prevent oversaturation</td>
</tr>
<tr>
<td></td>
<td>• Handle incidents and events</td>
</tr>
<tr>
<td>• % arrivals on green, by link</td>
<td>• Multiple objectives by TOD</td>
</tr>
<tr>
<td>• V/C ratio by movement</td>
<td></td>
</tr>
<tr>
<td>• Platoon ratio, by link</td>
<td>• Access equity</td>
</tr>
<tr>
<td>• Phase green to occupancy ratio by</td>
<td>• Multiple objectives by TOD</td>
</tr>
<tr>
<td>movement</td>
<td>• Accommodate long-term variability</td>
</tr>
<tr>
<td>• Reliability of phase metrics</td>
<td></td>
</tr>
</tbody>
</table>
Intersection Delay

- Control Delay
- Queue Delay
- Segment Delay
- Stopped Delay

Vehicle Trajectory

Time

Distance

Stop line

Target Speed

Acceleration

Deceleration

Distance

Vehicle Trajectory
Estimation of Control Delay

- Highway Capacity Manual (HCM) methodology
- Track end of queue each cycle
- At regular intervals, record # of vehicles in queue
- Count total volume served
- Compute time-in-queue per vehicle and control delay
Queue Length

- Measure of physical space occupied by vehicles waiting to proceed
- Average queue
- 95th percentile queue
- HCM \rightarrow back of queue
Saturation Flow Rate

- Saturation Flow Rate
- Start-up lost time
- Operation at saturation flow rate
- Clearance lost time

Effective green time

Flow Rate (pcph)
Volume-to-Capacity (v/c) Ratio

- Measure of utilization of available capacity
- By lane group or intersection as a whole
- V/c ratios < 1.0 imply under saturated, > 1.0 imply oversaturated
- Low values of v/c imply potential wasted time
- To maximize throughput, ideal is around 0.85 to 0.95
Plots of v/c Ratio

High Volume to Capacity Ratios

Low Volume to Capacity Ratios
Intersection Throughput

- Number of vehicles serviced at intersection
- Demand served versus demand present
- Time to resolve residual queues
Other Common Performance Measures

• “Gap outs” and “max outs”
• Intersection sight distance
• Traffic counts
Common Controller Reports and Logs

- Phase status
- Event
- Detector status
- Communication

- Phase utilization
- Split
- Volume-to-capacity
Phase Failures

The graph shows the number of phase failures per 30 minutes for different times of the day. P1 (SL) and P2 (N) have many phase failures, while P3 (WL) has a higher number of failures compared to P4 (E). P6 (S) and P5 (NL) have no phase failures, with P7 (EL) having a moderate number. P8 (W) also has no phase failures.

Time of Day

Number of Phase Failures per 30 minutes
Corridor Throughput

- Number of vehicles traversing a roadway section in one direction per unit of time
- Evaluate ability to serve a given vehicular demand in a given period of time
- Doesn’t necessary tell whole story
Measures of Stops

- Number of stops → quality of progression
- Stops per mile → HCM measure
- High impact on emissions
- Driver frustration
Travel Time

- Most popular measure of arterial performance
- Travel speed can be derived from it
- Transit running speed
- Bicycle and pedestrian travel speeds
Techniques for Measuring Travel Time

- Test Vehicles
- Floating car studies
- GPS-equipped probe
- Distance Measuring Instrument (DMI)

- Vehicle re-identification
- License-plate matching
- Bluetooth
- Cell phone/private data providers
Quality of Progression – Bandwidth

• Bandwidth efficiency – average fraction of the cycle length used for progression
• Bandwidth attainability – how well the bandwidth makes use of the available green time
• Efficiency cannot exceed attainability
Phase (Green) Utilization

- Ratio of used green to available green

Green Utilization = 7 sec/10 sec = 70%
% Arrival on Green

Poor Progression

Good Progression

Arrivals
Purdue Coordination Diagram – Good Progression

End of Green (EOG)

Beginning of Green (BOG)

Good progression
Purdue Coordination Diagram – Poor Progression

Poor progression
Other Potential Measures

- Queue storage ratio by movement
- Total delay for all vehicles served by the system
- Number of street segments with spillback
- Duration of over-saturation
- Total travel time for all vehicles served by the system
Evaluation Document Online

• Measures of effectiveness and validation guidance for adaptive signal control technologies (ASCT)

• http://www.ops.fhwa.dot.gov/publications/fhwaahop13031/index.htm
What did we discuss?

• Where to and not to install ASCT
• First Steps
• Operational objectives
• Planning and operations
• Systems engineering basics
• Federal regulations
• Using the Model SE for ASCT documents
• ASCT procurement
• ASCT performance monitoring
NHI Traffic Signal Courses

• Traffic Signal Design and Operation (133121)
• Traffic Signal Timing Concepts (133122)
• Systems Engineering for Signal Systems Including Adaptive Control (133123)
• Evaluating Performance of Traffic Signal Systems (133124)
• Successful Traffic Signal Management: The Basic Service Approach (133125)
Questions?

- http://www.ops.fhwa.dot.gov/

Rick Denney, P.E.
Traffic Management Specialist
(410) 962-4796
Richard.Denney@dot.gov

Paul R. Olson, P.E.
Traffic Management Specialist
(720) 963-3239
Paul.Olson@dot.gov

Eddie Curtis, P.E.
Traffic Management Specialist
(404) 562-3920
eddie.curtis@dot.gov